The Francis Crick Institute is a biomedical discovery institute dedicated to understanding the fundamental biology underlying health and disease. Its work is helping to understand why disease develops and to translate discoveries into new ways to prevent, diagnose and treat illnesses such as cancer, heart disease, stroke, infections, and neurodegenerative diseases.

An independent organisation, its founding partners are the Medical Research Council (MRC), Cancer Research UK, Wellcome, University College London, Imperial College London and King's College London. The Crick was formed in 2015, with many of the Crick's scientists joining from two 'parent' institutes, the MRC's National Institute for Medical Research and Cancer Research UK's London Research Institute, and in 2016 it moved into a brand new state-of-the-art building in central London which brings together 1500 scientists and support staff working collaboratively across disciplines, making it the biggest biomedical research facility under a single roof in Europe.
A sweet-spot for physical vibration, acoustic vibration and electro-magnetic fields was identified at the southwest corner of the site in the lower basement, almost thirty metres underground. A team of experts in electron microscopy, NMR, advanced light microscopy, vibration control and electromagnetic field control worked together with the construction team, engineers and architects over the next 8 years to deliver the project. This interaction was key to the success of the project, and included frequent on-site visits to monitor the complex build.

The main construction phase finished in 2013 and a two-year period of fitting-out began. This phase of the build included installation of measures to attenuate electromagnetic fields and vibrations.

Each microscope room is a six-sided shielded box, with walls that contain complex metallic layers to attenuate DC fields, and an active cancellation system to attenuate AC fields. Under each microscope is a concrete platform, cast in place, and supported by air springs that remove environmental vibration to <1 Hz. Each room has tight control of air quality, airflow, temperature stability and humidity, all of which are monitored through a complex building management system with 27,000 individual monitoring points. In case of power outages, the entire imaging suite is supported by a dedicated uninterruptible power supply, which was recently tested and proved invaluable during a power failure at the local electricity sub-station.

The time, effort, teamwork and expertise that went into the project delivered an impressive suite of rooms tailored to running sensitive high-resolution imaging experiments on a wide array of high-end instrumentation.

Instrumentation
The Structural Biology STP holds two FEI Titan Krios transmission EMs (TEMs), for studying macromolecules and frozen hydrated cells. The EM STP holds a range of microscopes that enable us to study samples across scales, from single molecules to whole model organisms. These include two benchtop scanning EMs (SEMs), two TEMs, three SEMs, a Focused Ion Beam SEM and a microCT system. Each of these systems has additional specialised functions:

- The Phenom-World DelPhi benchtop SEM has an integrated fluorescence microscope for correlative imaging
- The FEI Twin 120 kV TEM has a cryo stage for screening vitrified macromolecular samples prior to imaging on 200 kV and 300 kV TEMs
- The FEI BioTwin 120 kV TEM has an integrated iCorr fluorescence microscope for correlative microscopy
- The FEI Quanta SEM has a Delmic SECOM integrated super-resolution fluorescence microscope for high accuracy correlative microscopy
- The Zeiss Sigma and Merlin SEMs have Gatan 3View stages for volume EM
- The Zeiss Crossbeam 540 FIB SEM is used for cryo-electron tomography sample preparation
- The Zeiss Versa 510 microCT has Atlas 5 software for 3D correlative imaging

Science and Technology Development
The EM STP collaborates with Crick researchers on ~80 projects at any one time. Some examples of our recent work are:

- Studies of the role of RAD51 paralogs in repair of DNA damage, processes that are involved breast and ovarian cancer, with Simon Boulton’s lab using TEM (1, 2)
- Studies of Mycobacterium tuberculosis infecting human lymphatic endothelial cells and...
The EM STP team consists of nine postdoctoral scientists: seven are electron microscopists and two have a background in physics, optics and image analysis. They are...

Name: Lucy Collinson
Role: Head of EM STP and Microscopy Prototyping

Qualifications: Degree and PhD in Microbiology, post doc in Cell Biology
Joined the team: 2006
Microscopy speciality: 3D correlative microscopy

Name: Raffaella Carzaniga (known as Raffa)
Role: Deputy Head of the EM STP

Best-in-class online scheduling calendar with configurable rules to control who can book what, where and when.

A fully-featured reporting system for generating billing and auditing information.

An integrated, intelligent system that allows for multifaceted activity bookings.

Automated and targeted emails for activity notifications, confirmations and cancellations.

Brand new Inventory, Services and Workflow features for enhanced flexibility.

Utilised in a multitude of Core Facilities across Europe, North America, Africa and Asia.

Would you like to see how Calpendo can benefit you and your Facility? Contact us now for a free demonstration and 30 day trial.

Attending MMC 2017?
Come and visit us at Stand 104

Tel: +44 (0)1235 813458
Email: info@exprodo.com
Web: www.exprodo.com
Name: Christopher Peddie
Role: Principle Laboratory Research Scientist

Qualifications: MBiochem (Hons), PhD in neuroscience, post-docs in neuroscience and in peripheral nerve injury models

Joined the team: 2011

Microscopy speciality: CLEM, ILSEM, SBF SEM, FIB SEM

Favourite microscope: Zeiss Crossbeam 540 (new, shiny and extremely capable), and the venerable Jeol 1010

Favourite publication and why: ‘Acute manipulation of diacylglycerol reveals roles in nuclear envelope assembly & endoplasmic reticulum morphology’ (17) – one of my first projects after joining the team, a steep learning curve, and an interesting group of people to work with

What three items would you take to a desert island: A solar panel, a cable and my iPhone

If you weren’t a scientist, what would you be and why: Probably I’d focus on something more hands on like mechanical engineering since I seem to have a particular aptitude for that type of work and I find it interesting, but in another time and place (and with a bit more brilliance up top) I’d have really liked to be a veterinary surgeon. Or a helicopter pilot.

What’s the best advice you’ve been given: Controls are a prerequisite, question the dogma, and if you really want to find all the typos, read it backwards

Name: Anne Weston
Role: Senior Laboratory Research Scientist

Qualifications: Degree in Zoology, PhD in Bioinformatics

Joined the team: 2003

Microscopy speciality: Multi-disciplinary but probably more likely to be associated with SEM and MicroCT

Favourite microscope: SEM

Favourite publication and why: ‘Imaging transient blood vessel fusion events in zebrafish by correlative volume electron microscopy’ (18) – even though I wasn’t involved in this publication I like it because it was really the start of the whole volume EM interest in our lab and that is a technique which I particularly enjoy

What three items would you take to a desert island: If we are talking purely material things then sun cream so that I don’t burn to a crisp, my kindle (fully charged of course) and a camera (with plenty of spare batteries) – this one is a bit of a cheat as it would be dual purpose in that I could use it to take photos but it would also have all my favourite photos of my family still stored in its memory!

Name: Matt Russell
Role: Senior Laboratory Research Scientist

Qualifications: MA/MSci in Biochemistry, PhD in Cell Biology

Joined the team: 2013

Microscopy speciality: 3D correlative light and electron microscopy

Favourite microscope: Philips EM400

Favourite publication and why: ‘Mycobacterium tuberculosis replicates within necrotic human macrophages’ (3). Because it used
techniques for correlating LM, serial block face SEM, and TEM that we’d predicted could be useful in an earlier methods paper.

If you weren’t a scientist, what would you be and why: Journalist, because I’ve always wanted to try to understand the truth about things.

What’s the best advice you’ve been given: Do something that really interests you.

What three items would you take to a desert island: My wife, my cast iron skillet, and a stereo microscope.

Name: Marie-Charlotte Domart
Role: Senior Laboratory Research Scientist
Qualifications: Degree in Cell Biology and Physiology, Masters in Oncology, PhD in Biochemistry and Molecular Biology, Postdoc in Cell Biology
Joined the team: September 2013
Microscopy speciality: Correlative light and soft X-ray or electron microscopy

Favourite publication and why: Without a doubt my postdoc paper, ‘Acute manipulation of diacylglycerol reveals roles in nuclear envelope assembly & endoplasmic reticulum morphology’ (17) as this work not only marks the start of my collaboration with Lucy and Chris, but also introduced me to CLEM, which led me to join the team!

If you weren’t a scientist, what would you be and why: Pastry chef! I love cakes and the precision needed to make visually perfect cakes (picture a French patisserie window...)

What’s the best advice you’ve been given: Eat cake and carry on!

What three items would you take to a desert island: Crisp, Crisp, Crisp.

Name: Martin Jones
Role: Deputy Head of Microscopy Prototyping
Qualifications: Undergraduate degree in Physics with Electronics and Optoelectronics, MSc in Evolutionary and Adaptive Systems, DPhil in Experimental Atomic Physics (Quantum Information)
Joined the team: 2014, although I’ve been interacting with the team since I saw Bram Koster give a talk on CLEM in 2012 and started thinking about building in situ CLEM systems.

Microscopy speciality: Image analysis and microscope hardware development

Favourite microscope: I don’t really use them myself. The FIB SEM is definitely impressive. Also the smartphone microscope platforms that we use for outreach work (and are used by various Cancer Research UK outreach teams around the country now)

Favourite publication and why: ‘UltraLM and miniLM: Locator tools for smart tracking of fluorescent cells in correlative light and electron microscopy’ (11), which is the realisation of an idea I had and randomly pitched to Lucy, the development of the project is why I ended up in the EM STP.

If you weren’t a scientist, what would you be and why: Teacher. Before my degree I was more or less planning to go into teaching, I think it’s one of the most important but unfortunately underappreciated jobs. During my DPhil and physics postdocs I taught various courses and labs and really enjoyed the challenge of having to explain things in...
different ways for different students, it really makes sure you understand it yourself!

What’s the best advice you’ve been given: My old history teacher at school was worried that I was too shy and couldn’t hold conversations very well, so he told me: whenever someone asks you a question, think of what their follow up question might be and try to answer that too, before they ask. I think this approach works very well in science too, following a line of reasoning along to its logical conclusion is important.

What three items would you take to a desert island: A boat to get away, food and water for the journey home.

Future Directions
Now that EM image acquisition is becoming more automated, one of the biggest challenges in our work is handling and analysing the huge amounts of data we produce. Volume EM techniques, including SBF SEM and FIB SEM, can turn out thousands of images in just a few days. Two approaches we are pursuing to deal with the data deluge are:

1) Smart data acquisition
Correlative microscopy may be seen as a form of smart data acquisition, in that cells of interest are identified using one imaging modality (e.g. fluorescence microscopy) and then high resolution images are collected using a second imaging modality (e.g. electron microscopy). Introducing miniaturised fluorescence microscopes into volume EMs will allow us to track fluorescent cells on-the-fly during automated data acquisition runs, so that we only collect images from the cells and tissues of interest. Miniaturisation is required due to the extremely tight space within the SEM chamber in these systems. Our prototype fluorescence microscope, the miniLM, is only 2.8 mm in diameter (11).

2) Automated image analysis
Development of automated image analysis algorithms for EM is challenging. Many cell membranes have similar grey values in EM images, and so simple histogram thresholding often gives a poor result when trying to select a subset of cell organelles. Manual annotation (segmentation) of organelles is usually required to create accurate 3D models, but the process is extremely time-consuming. Machine learning techniques are starting to deliver semi-automated image analysis algorithms, particularly in the field of connectomics. However, machine learning requires large amounts of ‘ground truth’ training data, which is lacking in EM because of the time taken for expert manual segmentation.

To deal with this problem, we are harnessing the brute force power of Citizen Science to produce ground truth segmentations. Our project ‘Etch a Cell’ (www.zooniverse.org/projects/h-spiers/etch-a-cell) is hosted by the Zooniverse platform, which has more than a million volunteer citizen scientists working on projects from the arts to ecology, and from space to medicine. Etch a Cell asks citizen scientists to draw around cell organelles, starting with the nuclear envelope. Within two weeks of launch, Etch a Cell had more than 1000 volunteers and more than 13,000 nuclear envelope segmentations. The first average models of nuclear envelopes are now being made and analysed, and will be used to train computers via deep learning algorithms. Once you have finished reading infocus, we hope you will grab a cup of tea, and stop by the Etch a Cell website to add a few segmentations of your own…

Further Information
If you would like to visit us and hear more about the impact of EM on biomedical research, you can register for our Crick EM Opening Symposium. The symposium will take place on July 12th and 13th 2017, and will feature talks from international experts on EM imaging across scales, from molecules to whole organisms. The symposium will be accompanied by a day of workshops on July 14th. Registration can be found at www.rms.org.uk/crick-symposium-2017.

Website: www.crick.ac.uk/research/science-technology-platforms/electron-microscopy
Twitter: @EM_STP and @EtchACell
Email: lucy.collinson@crick.ac.uk

You can view more information about the Francis Crick Institute on the RMS Facilities Database at www.rms.org.uk/facilities-database. Further information about Etch a Cell is available at www.zooniverse.org/projects/h-spiers/etch-a-cell.
References:

Fiona Hanson/Francis Crick Institute

labtech...

...innovative and practical tools for electron microscopists

- Consumables and accessories for SEM, FIB and TEM
- EM specimen preparation and manipulation
- Established UK-wide sales and service
- Friendly, knowledge-based support
- Serving UK science for 24 years

labtech

ELECTRON MICROSCOPY DIVISION
www.labtech-em.com Tel: 01825 744690

• Consumables and accessories for SEM, FIB and TEM
• EM specimen preparation and manipulation
• Established UK-wide sales and service
• Friendly, knowledge-based support
• Serving UK science for 24 years